The Electrical and Computer Engineering curricula produce well-educated graduates prepared to practice engineering at a professional level in an era of rapid and challenging technological development. The educational objectives of the Electrical Engineering curriculum include developing within our graduates a basic foundation in seven fundamental areas of electrical engineering (circuits and systems, electromagnetics, electronics, digital systems, communications and signal processing, control systems, and power engineering) to provide the technical proficiency needed for the professional practice of electrical engineering. The educational objectives of the Computer Engineering curriculum include developing within our graduates a basic foundation in both electrical engineering (circuits and systems, electronics, and digital systems) and computer science to provide the technical proficiency needed for the professional practice of computer engineering, including the design and application of computer components and systems. In addition, both curricula have as educational objectives to develop within our graduates the ability to communicate their ideas effectively to technical and non-technical audiences and work effectively in multidisciplinary teams, to prepare them to take their places in society as responsible citizens, and to provide them with the basis for, and instill within them an appreciation of and enthusiasm for, lifelong scientific inquiry, learning and creativity.

The goal of the professional portion of each curriculum is to emphasize basic areas of study while providing the flexibility to accommodate a diversity of interests and talents. To this end, each curriculum emphasizes engineering design, hands-on laboratory experience, knowledgeable use of digital computer systems, oral and written communication skills, the importance of business, economic, social and global forces on engineering, appreciation of the need to maintain the highest ethical standards, and the maintenance of professional competence through continued self-improvement after graduation.

Each curriculum builds upon a solid foundation in mathematics and science. In the Electrical Engineering curriculum, topics in the seven fundamental areas of electrical engineering are introduced early and are carefully coordinated to provide the principles necessary for the practice of electrical engineering. In the Computer Engineering curriculum, fundamental topics in both electrical engineering and computer science are introduced early and are carefully coordinated to provide the principles necessary for the design and application of computer components and systems. In each case, design experience is interwoven throughout the curriculum by introducing basic design concepts early, emphasizing design experiences in the laboratories, and culminating with a capstone design project in the senior year. The senior year elective structure provides students with the flexibility to pursue a range of career options.

Major

- Computer Engineering (http://bulletin.auburn.edu/undergraduate/samuelginncollegeofengineering/departmentofelectricalandcomputerengineering/electricalengineering_computerengineering_major)
- Electrical Engineering (http://bulletin.auburn.edu/undergraduate/samuelginncollegeofengineering/departmentofelectricalandcomputerengineering/electricalengineering_major)
- Wireless Engineering (Hardware Option) (http://bulletin.auburn.edu/undergraduate/samuelginncollegeofengineering/departmentofelectricalandcomputerengineering/wirelessengineeringhardware_major)
- Wireless Engineering (Software Option) (http://bulletin.auburn.edu/undergraduate/samuelginncollegeofengineering/departmentofelectricalandcomputerengineering/wirelessengineeringsoftware_major)

Courses

ELEC 2110 ELECTRIC CIRCUIT ANALYSIS (4) LEC. 3. LAB. 3. Pr. (PHYS 1610 or PHYS 1617) and (COMP 1200 or COMP 1210 or COMP 1217) and (P/C ENGR 1110 or P/C ENGR 1113) and P/C MATH 2650. Basic laws and concepts; resistive circuits; first-order transient circuits; phasors and frequency response of circuits; RMS values and complex power.

ELEC 2120 LINEAR SIGNALS AND SYSTEMS ANALYSIS (3) LEC. 3. Pr. ELEC 2110 and MATH 2650. Time-domain and frequency-domain methods for modeling and analyzing continuous and discrete-data signals and systems.

ELEC 2200 DIGITAL LOGIC CIRCUITS (3) LEC. 3. Pr. COMP 1200 or COMP 1210 or COMP 1217. Electronic devices and digital circuits; binary numbers; Boolean algebra and switching functions; gates and flip-flops; combinational and sequential logic circuits; hierarchical design of digital systems; computer-aided design tools for digital design, simulation, and testing.

ELEC 2210 DIGITAL ELECTRONICS (4) LEC. 3. LAB. 3. Pr. ELEC 2110 and ELEC 2200. History of electronics; semiconductors; biasing and operation of PN junction diodes; field-effect transistors and bipolar junction transistors; logic families and logic technologies; flip-flops and memory circuitry.
ELEC 2220 COMPUTER SYSTEMS (3) LEC. 3. Pr. ELEC 2200. Computer hardware/software organization, processor programming models, assembly language programming, design of memory systems, I/O device interfacing, programming and multiprocessing.

ELEC 3030 RF SYSTEMS LAB (1) LAB. 3. Pr. ELEC 2210. Assembly, testing and analysis of a radio. Integration of basic concepts of electronics, electromagnetics, and signals and systems.

ELEC 3040 ELECTRICAL SYSTEM DESIGN LAB (1) LAB. 3. Pr. ELEC 2220 and ELEC 3030 and P/C ELEC 3500. Exploration and integration of electrical engineering concepts and professional practice issues through the design of a contemporary engineering system.

ELEC 3050 EMBEDDED SYSTEM DESIGN LAB (1) LAB. 3. Pr. ELEC 2210 and ELEC 2220. Integration of hardware and software in the design of an embedded computing system; development of professional skills.

ELEC 3060 WIRELESS DESIGN LAB (1) LAB. 3. Pr. ELEC 3400. Laboratory experiments geared towards understanding the implementation and testing of components used in wireless communication systems.

ELEC 3310 FUNDAMENTALS OF APPLIED ELECTROMAGNETICS (3) LEC. 3. Pr. MATH 2660 and ELEC 2110. Transmission lines are studied as a bridge to understanding electromagnetic theory. Then, electric and magnetic fields are studied using vector algebra, culminating in Maxwell's equations.

ELEC 3320 ELECTROMAGNETICS FOR WIRELESS COMMUNICATION (3) LEC. 3. Pr. ELEC 3310. Maxwell's equations are used in the study of plane waves, guided waves, fiber optics, electromagnetic compatibility and interference, antennas and radiation, and satellite communication systems.

ELEC 3400 COMMUNICATION SYSTEMS (3) LEC. 3. Pr. ELEC 3800. Pulse code modulation, line coding, information rate, equalization, amplitude modulation, angle modulation, noise in communication systems.

ELEC 3500 CONTROL SYSTEMS (3) LEC. 3. Pr. ELEC 2120. Analog and discrete transfer function models, system response specifications, control system characteristics, root locus analysis and design, frequency response analysis and design.

ELEC 3600 ELECTRIC POWER ENGINEERING (3) LEC. 3. Pr. ELEC 2110. Introduction to the basic concepts in electric power engineering.

ELEC 3800 RANDOM SIGNALS AND SYSTEMS (3) LEC. 3. Pr. ELEC 2120. Introduction to probability, random variables, random processes and basic statistics, analysis of random signals and noise.

ELEC 3810 FUNDAMENTALS OF ELECTRICAL ENGINEERING (3) LEC. 3. Pr. P/C MATH 2650. Electrical circuit analysis; electronic devices, digital systems, amplifier concepts, power devices and systems. Not open to ECE majors.

ELEC 4000 SENIOR DESIGN PROJECTS (3) LEC. 3. Pr. ELEC 3040 or ELEC 3050 or ELEC 3060. A capstone design project which draws on the accumulated curricular experience. Particular project sections may have additional requisites.

ELEC 4200 DIGITAL SYSTEM DESIGN (3) LEC. 2. LAB. 3. Pr. ELEC 2210 and ELEC 2220. Hierarchical, modular design of digital systems, computer-aided digital system modeling, simulation, analysis, and synthesis; design implementation with programmable logic devices and FPGAs.

ELEC 4800 INSTRUMENTATION ENGINEERING (3) LEC. 2. LAB. 3. Pr. ELEC 3040 or ELEC 3050. Study and application of sensors, instrumentation and computer technology to research and industrial process control.

ELEC 4810 LONG TERM TECHNOLOGY DEVELOPMENT AND PROJECT MANAGEMENT (1-2) LAB. Pr. ELEC 2120. Departmental approval. Students participate in ongoing electrical, computer, or wireless engineering design projects and competitions while learning project management and organization strategies. May be repeated for up to three credit hours. Course may be repeated for a maximum of 2 credit hours.

ELEC 4980 SPECIAL PROJECTS (1-3) IND. Coreq. CADS 3750. Departmental approval. Supervised study of a specialized area of electrical and computer engineering not covered by regularly offered courses. Course may be repeated with change in topics. Course may be repeated with change in topics.
ELEC 4997 HONORS THESIS (1-6) IND. Pr. Honors College. Departmental approval. Directed research and writing of honors thesis. Course may be repeated for a maximum of 6 credit hours.

ELEC 5100 WIRELESS COMMUNICATION SYSTEMS (3) LEC. 3. Pr. ELEC 3400. Introduction to mobile cellular radio and wireless personal communications, mobile radio propagation, modulation techniques, multiple access techniques, wireless systems and standards.

ELEC 5110 WIRELESS NETWORKS (3) LEC. 3. Pr. ELEC 3400. Introduction to wireless broadband, satellite communication, wireless local area networks, Bluetooth and Home RF standards and Internet protocol and wireless access.

ELEC 5120 TELECOMMUNICATION NETWORKS (3) LEC. 3. Pr. ELEC 3400. Principles and building blocks of telecommunication systems, including switched telephone networks, voice and data networks, transmission technologies, and switching architectures.

ELEC 5130 RF DEVICES AND CIRCUITS (3) LEC. 3. Pr. ELEC 3700. Introduction to RF semiconductor devices and circuits targeted for wireless applications.

ELEC 5150 INFORMATION SECURITY (3) LEC. 3. Departmental approval. Emerging protocols, standards and technologies of information security; design of information network security using firewalls, virtual private networks and secured applications.

ELEC 5190 INTRODUCTION TO DIGITAL AND ANALOG IC DESIGN (3) LEC. 3. Pr. ELEC 3700. Digital IC design using Verilog, analog and mixed signal IC design using industry standard tools; emphasis on front-end design skills.

ELEC 5200 COMPUTER ARCHITECTURE AND DESIGN (3) LEC. 3. Pr. ELEC 4200. Structural organization and hardware design of digital computers; register transfers; micro-operations, control units and timing; instruction set design; input/output devices, multiprocessors, automated hardware design aids.

ELEC 5220 INFORMATION NETWORKS AND TECHNOLOGY (3) LEC. 3. Pr. ELEC 2220 or COMP 3350. Architectures, protocols, standards and technologies of information networks; design and implementation of information networks; applications of information networks for data, audio and video communications.

ELEC 5230 PARALLEL PROCESSING (3) LEC. 3. Pr. ELEC 2220 or COMP 3350. Hardware components of multiprocessor systems including processor, inter-connection, memory and control architectures; software elements of parallel processing.

ELEC 5250 COMPUTER AIDED DESIGN OF DIGITAL LOGIC CIRCUITS (3) LEC. 3. Pr. ELEC 2220 or COMP 3350. Computer-automated design of digital logic circuits using discrete gates, programmable logic devices, and standard cells; hardware description languages, circuit simulation for design verification and analysis, fault diagnosis and testing.

ELEC 5260 EMBEDDED COMPUTING SYSTEMS (3) LEC. 3. Pr. ELEC 2220 or COMP 3350. The design of systems containing embedded computers. Microcontroller technology, assembly language and C programming, input/output interfacing, data acquisition hardware, interrupts, and timing. Real-time operating systems and application programming. Embedded system application examples.

ELEC 5270 LOW-POWER DESIGN OF ELECTRONIC CIRCUITS (3) LEC. 3. Pr. ELEC 2210. Departmental approval. Design of digital circuits and systems for reduced power consumption, power analysis algorithms, low-power MOS technologies, low-power design architectures for FPGAs, memory, and microprocessors, reduction of power in testing of circuits.

ELEC 5280 BUILT-IN-SELF-TEST (3) LEC. 3. Pr. ELEC 2210. Testing during product life-cycle, fault models and detection, design for testability, test pattern generation, output response analysis, concurrent fault detection, manufacturing and system use, built-in self-test approaches and applications.

ELEC 5310 DESIGN OF ANTENNAS AND ANTENNA SYSTEMS (3) LEC. 3. Pr. P/C ELEC 3320. Application of electromagnetic and circuit concepts to the design of practical antennas and antenna systems.

ELEC 5320 ELECTROMAGNETIC COMPATIBILITY (3) LEC. 3. Pr. ELEC 3320 and ELEC 3700. Electromagnetic noise coupling, designing for electromagnetic compatibility (EMC), EMC regulation, noise sources, standard techniques for eliminating noise, circuit layout for reduced electromagnetic interference (EMI).

ELEC 5340 MICROWAVE AND RF ENGINEERING (3) LEC. 3. Pr. ELEC 3320 and ELEC 3700. Application of electromagnetic and electronic concepts to the design of practical microwave devices and circuits typically used in wireless communications.
ELEC 5350 RADAR PRINCIPLES (3) LEC. 3. Pr. ELEC 3320 and ELEC 3800. Study of the fundamentals of RADAR and related systems such as SONAR and LIDAR.

ELEC 5360 BIOMEDICAL APPLICATIONS OF ELECTROMAGNETICS (3) LEC. 3. Pr. ELEC 3310. Development of medical instrumentation using electromagnetic principles; focus on magnetic resonance imaging systems.

ELEC 5410 DIGITAL SIGNAL PROCESSING (3) LEC. 3. Pr. ELEC 3800. Digital processing of signals, sampling difference equations, discrete-time Fourier transforms, discrete and fast Fourier transforms, digital filter design.

ELEC 5530 MOBILE ROBOT DESIGN (3) LEC. 3. Pr. ELEC 3040 or ELEC 3050. Fundamentals of mobile robot design, including motor control, sensor integration, path planning, navigation, and localization.

ELEC 5620 POWER SYSTEM ANALYSIS (3) LEC. 3. Pr. ELEC 3600. Departmental approval. Power system modeling, power flow analysis, analysis of faulted power systems.

ELEC 5650 POWER SYSTEM PROTECTION (3) LEC. 3. Pr. ELEC 3600. Fault analysis using symmetrical components. Power switchgear, including switches, disconnects, fuses, relays and circuit breakers. Fundamentals of electric power system protection, including bus, transformer and line protection.

ELEC 5670 ELECTRIC POWER ENGINEERING TOPICS (1-3) LEC. Pr. ELEC 3600. Various topics representing state-of-the-art power technology. Course may be repeated for a maximum of 12 credit hours.

ELEC 5700 SEMICONDUCTOR FUNDAMENTALS (3) LEC. 3. Pr. ELEC 3700. Introduction to semiconductors: crystal structure, energy band theory, equilibrium electron and hole statistics, doping, generation and recombination processes, carrier drift and diffusion, transport equations.

ELEC 5710 SEMICONDUCTOR DEVICES (3) LEC. 3. Pr. ELEC 5700. Introduction to semiconductor devices: pn junctions, junction diode based devices, optoelectronic devices, bipolar transistors, field effect transistors.

ELEC 5730 MICROELECTRONIC FABRICATION (3) LEC. 2. LAB. 3. Pr. ELEC 2210. Departmental approval. Introduction to monolithic integrated circuit technology. Bipolar and MOS processes and structures. Elements of layout, design, fabrication, and applications. Experiments in microelectronic technologies.

ELEC 5740 ELECTRONICS MANUFACTURING (3) LEC. 2. LAB. 3. Pr. ELEC 2210. Departmental approval. Materials and processes used to manufacture electronic products. Particular attention is given to substrate technology and electronics assembly.

ELEC 5750 INTRODUCTION TO PLASMA ENGINEERING (3) LEC. 3. Pr. ELEC 3320. Departmental approval. Electrical breakdown and discharges in gases, basic plasma theories, applications of plasmas, plasma processing for microelectronic fabrication.

ELEC 5760 SOLID STATE SENSORS (3) LEC. 3. Pr. ELEC 3700. Theory, technology and design micro-machined sensors and related sensor technologies; and the application of micro-machined sensors.

ELEC 5770 VLSI DESIGN (3) LEC. 3. Pr. ELEC 2210 and ELEC 2220. Review of MOS transistor fundamentals, CMOS logic circuits; VLSI fabrication and design rules; clocking strategies and sequential design; performance estimation; memories and programmable arrays; standard cell design methodologies; computer aided design (CAD) tools.

ELEC 5780 ANALOG CIRCUIT DESIGN (3) LEC. 3. Pr. ELEC 3700. Departmental approval. Circuit design techniques used for implementing analog integrated circuits in both CMOS and bipolar technologies.

ELEC 5810 COMPUTED IMAGING SYSTEMS (3) LEC. 3. Pr. ELEC 2120. Departmental approval. Introduction to computed imaging systems such as magnetic resonance imaging (MRI) and computed tomography (CT).

ELEC 5820 MEMS TECHNOLOGY (3) LEC. 3. Departmental approval. Introduction to Micro-Electro-Mechanical Systems (MEMS), the study of the materials and microfabrication processes used to fabricate MEMS devices, the principles of operation of MEMS devices, and an introduction to the different application areas of MEMS devices.
ELEC 5970 SPECIAL TOPICS (1-5) LEC. Departmental approval. Study of a specialized area of electrical and computer engineering not covered by regularly offered courses. Course may be repeated with change in topics.

ELEC 6110/6116 WIRELESS NETWORKS (3) LEC. 3. Introduction to wireless broadband, satellite communication, wireless local area networks, Bluetooth and Home RF standards and Internet protocol and wireless access.

ELEC 6120/6126 TELECOMMUNICATION NETWORKS (3) LEC. 3. Principles and building blocks of telecommunication systems, including switched telephone networks, voice and data networks, transmission technologies, and switching architectures.

ELEC 6130/6136 RF DEVICES AND CIRCUITS (3) LEC. 3. Introduction to RF semiconductor devices and circuits targeted for wireless applications.

ELEC 6150/6156 INFORMATION SECURITY (3) LEC. 3. Departmental approval. Emerging protocols, standards and technologies of information security; design of information network security using firewalls, virtual private networks and secured applications.

ELEC 6190/6196 INTRODUCTION TO DIGITAL AND ANALOG IC DESIGN (3) LEC. 3. Digital IC design using Verilog, analog and mixed signal IC design using industry standard tools; emphasis on on front-end design skills.

ELEC 6200/6206 COMPUTER ARCHITECTURE AND DESIGN (3) LEC. 3. Structural organization and hardware design of digital computers; register transfers; micro-operations, control units and timing; instruction set design; input/output devices, multiprocessors, automated hardware design aids.

ELEC 6220/6226 INFORMATION NETWORKS AND TECHNOLOGY (3) LEC. 3. Architectures, protocols, standards and technologies of information networks; design and implementation of information networks; applications of information networks for data, audio and video communications.

ELEC 6230/6236 PARALLEL PROCESSING (3) LEC. 3. Hardware components of multiprocessor systems including processor, interconnection, memory and control architectures; software elements of parallel processing.

ELEC 6250/6256 COMPUTER AIDED DESIGN OF DIGITAL LOGIC CIRCUITS (3) LEC. 3. Computer-automated design of digital logic circuits using discrete gates, programmable logic devices, and standard cells; hardware description languages, circuit simulation for design verification and analysis, fault diagnosis and testing.

ELEC 6260/6266 EMBEDDED COMPUTING SYSTEMS (3) LEC. 3. The design of systems containing embedded computers. Microcontroller technology, assembly language and C programming, input/output interfacing, data acquisition hardware, interrupts, and timing. Real-time operating systems and application programming. Embedded system application examples.

ELEC 6270/6276 LOW-POWER DESIGN OF ELECTRONIC CIRCUITS (3) LEC. 3. Departmental approval. Design of digital circuits and systems for reduced power consumption, power analysis algorithms, low-power MOS technologies, low-power design architectures for FPGAs, memory, and microprocessors, reduction of power in testing of circuits.

ELEC 6280/6286 BUILT-IN-SELF-TEST (3) LEC. 3. Testing during product life-cycle, fault models and detection, design for testability, test pattern generation, output response analysis, concurrent fault detection, manufacturing and system use, built-in self-test approaches and applications.

ELEC 6310/6316 DESIGN OF ANTENNAS AND ANTENNA SYSTEMS (3) LEC. 3. Application of electromagnetic and circuit concepts to the design of practical antennas and antenna systems.

ELEC 6320/6326 ELECTROMAGNETIC COMPATIBILITY (3) LEC. 3. Electromagnetic noise coupling, designing for electromagnetic compatibility (EMC), EMC regulation, noise sources, standard techniques for eliminating noise, circuit layout for reduced electromagnetic interference (EMI).

ELEC 6340/6346 MICROWAVE AND RF ENGINEERING (3) LEC. 3. Application of electromagnetic and electronic concepts to the design of practical microwave devices and circuits typically used in wireless communications.

ELEC 6350/6356 RADAR PRINCIPLES (3) LEC. 3. Study of the fundamentals of RADAR and related systems such as SONAR and LIDAR.
ELEC 6360/6366 BIOMEDICAL APPLICATIONS OF ELECTROMAGNETICS (3) LEC. 3. Development of medical instrumentation using electromagnetic principles; focus on magnetic resonance imaging systems.

ELEC 6410/6416 DIGITAL SIGNAL PROCESSING (3) LEC. 3. Digital processing of signals, sampling difference equations, discrete-time Fourier transforms, discrete and fast Fourier transforms, digital filter design.

ELEC 6530/6536 MOBILE ROBOT DESIGN (3) LEC. 3. Fundamentals of mobile robot design, including motor control, sensor integration, path planning, navigation, and localization. Departmental Approval.

ELEC 6620/6626 POWER SYSTEM ANALYSIS (3) LEC. 3. Departmental approval. Power system modeling, power flow analysis, analysis of faulted power systems.

ELEC 6650/6656 POWER SYSTEM PROTECTION (3) LEC. 3. Fault analysis using symmetrical components. Power switchgear, including switches, disconnects, fuses, relays and circuit breakers. Fundamentals of electric power system protection, including bus, transformer and line protection.

ELEC 6670/6676 ELECTRIC POWER ENGINEERING TOPICS (1-3) LEC. Various topics representing state-of-the-art power technology. Course may be repeated for a maximum of 12 credit hours.

ELEC 6700/6706 SEMICONDUCTOR FUNDAMENTALS (3) LEC. 3. Introduction to semiconductors: crystal structure, energy band theory, equilibrium electron and hole statistics, doping, generation and recombination processes, carrier drift and diffusion, transport equations.

ELEC 6710/6716 SEMICONDUCTOR DEVICES (3) LEC. 3. Pr. ELEC 5700 or ELEC 6700 or ELEC 6706. Introduction to semiconductor devices: pn junctions, junction diode based devices, optoelectronic devices, bipolar transistors, field effect transistors.

ELEC 6730/6736 MICROELECTRONIC FABRICATION (3) LEC. 2. LAB. 3. Departmental approval. Introduction to monolithic integrated circuit technology. Bipolar and MOS processes and structures. Elements of layout, design, fabrication, and applications. Experiments in microelectronic technologies.

ELEC 6740/6746 ELECTRONICS MANUFACTURING (3) LEC. 2. LAB. 3. Departmental approval. Materials and processes used to manufacture electronic products. Particular attention is given to substrate technology and electronics assembly.

ELEC 6750/6756 INTRODUCTION TO PLASMA ENGINEERING (3) LEC. 3. Departmental approval. Electrical breakdown and discharges in gases, basic plasma theories, applications of plasmas, plasma processing for microelectronic fabrication.

ELEC 6760/6766 SOLID STATE SENSORS (3) LEC. 3. Theory, technology and design of micro-machined sensors and related sensor technologies; and the application of micro-machined sensors.

ELEC 6770/6776 VLSI DESIGN (3) LEC. 3. Review of MOS transistor fundamentals, CMOS logic circuits; VLSI fabrication and design rules; clocking strategies and sequential design; performance estimation; memories and programmable arrays; standard cell design methodologies; computer aided design (CAD) tools.

ELEC 6780/6786 ANALOG CIRCUIT DESIGN (3) LEC. 3. Circuit design techniques used for implementing analog integrated circuits in both CMOS and bipolar technologies.

ELEC 6810/6816 COMPUTED IMAGING SYSTEMS (3) LEC. 3. Introduction to computed imaging systems such as magnetic resonance imaging (MRI) and computed tomography (CT).

ELEC 6820/6826 MEMS TECHNOLOGY (3) LEC. 3. Departmental approval. Introduction to Micro-Electro-Mechanical Systems (MEMS), the study of the materials and microfabrication processes used to fabricate MEMS devices, the principles of operation of MEMS devices, and an introduction to the different application areas of MEMS devices.

ELEC 6970/6976 SPECIAL TOPICS (1-5) LEC. Departmental approval. Study of a specialized area of electrical and computer engineering not covered by regularly offered courses. Course may be repeated with change in topics. Course may be repeated for a maximum of 24 credit hours.
ELEC 7190/7196 ADVANCED RFIC DESIGN FOR WIRELESS COMMUNICATIONS (3) LEC. Pr. ELEC 5190 or ELEC 6190 or ELEC 6196. Wireless standards and multi-standard transceiver architectures, SiGe and CMOS RFIC designs for wireless transceiver building blocks, software defined radios, phase array radars, ultra-high speed data converters, and MIMO wireless transceivers.

ELEC 7250/7256 VLSI TESTING (3) LEC. 3. Pr. ELEC 5770 or ELEC 6770 or ELEC 6776. Exponential nature of the test problem, fault models, test generation algorithms, test generation for sequential circuits, fault simulation, testability measures, fault coverage, yield and defect levels, design-for-testability approaches.

ELEC 7320/7326 ADVANCED ELECTRODYNAMICS II (3) LEC. 3. Pr. ELEC 7310 or ELEC 7316. Cylindrical wave functions. Spherical wave functions. Scattering by cylinders and spheres. Perturbational and variational techniques.

ELEC 7340/7346 COMPUTATIONAL ELECTROMAGNETICS I (3) LEC. 3. Pr. ELEC 7310 or ELEC 7316. Solution of electromagnetic scattering, radiation, and coupling problems using method of moments, finite-difference, finite-element, transmission-line matrix and other advanced computational methods.

ELEC 7350/7356 COMPUTATIONAL ELECTROMAGNETICS II (3) LEC. 3. Pr. ELEC 7310 or ELEC 7316. Solutions of electromagnetic scattering, radiation, and coupling problems using a variety of common asymptotic techniques.

ELEC 7410/7416 STOCHASTIC SIGNAL AND SYSTEM ANALYSIS (3) LEC. 3. Departmental approval. Applications of probability, random variables and stochastic processes in electrical engineering.

ELEC 7420/7426 ADAPTIVE SIGNAL PROCESSING (3) LEC. 3. Least mean square and recursive least square algorithms; adaptive FIR and IIR filters, lattice filters, Kalman filters; adaptive system identification and its application in communications and control.

ELEC 7430/7436 ADVANCED COMMUNICATION THEORY (3) LEC. 3. Principles of modern communication systems. Elements of information theory, source encoding, efficient signaling with coded waveforms, convolutional codes; carrier recovery and synchronization under AGN channel; adaptive equalization; maximum likelihood estimation, Viterbi algorithm. Departmental Approval.

ELEC 7440/7446 WIRELESS COMMUNICATION THEORY (3) LEC. 3. Pr. ELEC 3400 or ELEC 7410 or ELEC 7416. The basic of design, analysis and performance limits of wireless communication systems.

ELEC 7450/7456 DIGITAL IMAGE PROCESSING (3) LEC. 3. Departmental approval. Digital image processing principles and applications such as enhancement, restoration and compression.

ELEC 7500/7506 STATE-VARIABLE ANALYSIS OF SYSTEMS (3) LEC. 3. Departmental approval. Matrices and linear spaces; state variable for linear continuous and discrete systems; applications in analysis and design of control systems.

ELEC 7560/7566 NONLINEAR SYSTEMS AND CONTROL (3) LEC. 3. Pr. ELEC 7500 or ELEC 7506. Departmental approval. Principles of nonlinear system modeling and analysis; nonlinear control systems design; nonlinear state estimation.

ELEC 7610/7616 POWER SYSTEM DYNAMICS AND STABILITY (3) LEC. 3. Pr. (ELEC 5620 or ELEC 6620 or ELEC 6626) and (ELEC 5650 or ELEC 6650 or ELEC 6656). Departmental approval. Dynamic models of power systems and analysis of power system stability.

ELEC 7620/7626 POWER SYSTEM OPERATION (3) LEC. 3. Pr. ELEC 5620 or ELEC 6620 or ELEC 6626. Departmental approval. Unit commitment, power system security, state estimation, power system control centers and real-time applications.

ELEC 7630/7636 ADVANCED ELECTRIC MACHINES (3) LEC. 3. Pr. ELEC 5630 or ELEC 6630 or ELEC 6636. Departmental approval. Advanced machine modeling, including Kron's generalized machine theory, Park's transformation, and generalized coordinate transformations. Derivation of traditional machine models. Machine non-linearities, including finite element analysis.

ELEC 7640/7646 POWER SYSTEM TRANSIENTS (3) LEC. 3. Pr. ELEC 5620 or ELEC 6620 or ELEC 6626. Departmental approval. Transients in electric power systems, including lightning and switching phenomena. Traveling waves on power transmission lines, BIL, BSL, line insulation. System modeling.
ELEC 7710/7716 THE FIELD-EFFECT TRANSISTOR (3) LEC. 3. Pr. ELEC 5710 or ELEC 6710 or ELEC 6716. Advanced treatment of the modern field-effect transistor: the state-of-the-art, the MOS capacitor, the 4-terminal MOSFET, short and narrow-channel effects, reliability, scaling theory, modeling, silicon-on-insulator technology, heterostructure devices.

ELEC 7720/7726 THE BIPOLAR TRANSISTOR (3) LEC. 3. Pr. ELEC 5710 or ELEC 6710 or ELEC 6716. Advanced treatment of the modern bipolar junction transistor: the state-of-the-art, terminal currents, solutions for arbitrary doping profiles, the polysilicon emitter contact, high-injector effects, dynamic operation, device models, heterojunction bipolar transistors.

ELEC 7730/7736 ADVANCED PLASMA PROCESSING FOR MICROELECTRONIC FABRICATION (3) LEC. 3. Pr. ELEC 5750 or ELEC 6750 or ELEC 6756. Departmental approval. Plasma reactor design and process optimization, plasma-assisted etching and deposition processes, plasma-assisted oxidation and surface modification processes, plasma polymerization, plasma-induced damages to semiconductor devices.

ELEC 7740/7746 ELECTRONIC PACKAGING (3) LEC. 3. Pr. ELEC 5740 or ELEC 6740 or ELEC 6746. Departmental approval. Design issues in the packaging of electronics. Emphasis is placed on physical design, electrical performance, thermal characteristics and mechanical stress-induced failures.

ELEC 7750/7756 LOW TEMPERATURE ELECTRONICS (3) LEC. 3. Pr. ELEC 5710 or ELEC 6710 or ELEC 6716. Advanced treatment of electronic devices operating at reduced temperatures: the case for cryogenic computers, semiconductor physics at low temperatures, carrier freeze-out, cooled CMOS technology, cooled bipolar technology, superconductors, packaging.

ELEC 7760/7766 SILICON-BASED HETEROSTRUCTURE DEVICES AND CIRCUITS (3) LEC. 3. Pr. ELEC 5700 or ELEC 6700 or ELEC 6706. Departmental approval. Bandgap engineering, strained SiGe and Si, SiGe BiCMOS technology, noise, linearity, circuits applications.

ELEC 7770/7776 ADVANCED VLSI DESIGN (3) LEC. 3. Pr. ELEC 5770 or ELEC 6770 or ELEC 6776. Departmental approval. Review of CMOS logic circuits; impact of fabrication issues on design; high speed switching circuits; high performance memory structures; advanced clocking strategies and clock distribution; performance optimization; deep submicron design issues; ASIC design flow: logic synthesis, placement and routing; design verification; low power design.

ELEC 7780/7786 RF MICROELECTRONICS (3) LEC. 3. Pr. ELEC 5780 or ELEC 6780 or ELEC 6786. Departmental approval. Techniques used in the design of monolithic integrated circuits for RF applications.

ELEC 7800/7806 ADVANCED COMPUTATIONAL TECHNIQUES FOR ELECTRICAL ENGINEERING (3) LEC. 3. Introduction to high level programming techniques in electrical engineering applications; topics include linear systems analysis, system identification, nonlinear dynamic systems, and electromagnetic applications. Departmental Approval.

ELEC 7830/7836 PHOTOVOLTAICS (3) LEC. 3. Departmental Approval. Theory, technology, design and application of photovoltaic devices and systems.

ELEC 7900 INDEPENDENT STUDY (1-3) IND. Course may be repeated for a maximum of 3 credit hours.

ELEC 7950 ELECTRICAL ENGINEERING SEMINAR (1-10) SEM. SU. Course may be repeated for a maximum of 10 credit hours.

ELEC 7970/7976 SPECIAL TOPICS (1-5) LEC. Departmental approval. Study of a specialized area of electrical and computer engineering not covered by regularly offered courses. Course may be repeated with change of topic. Course may be repeated for a maximum of 24 credit hours.

ELEC 7990 RESEARCH AND THESIS (1-6) MST. Course may be repeated for a maximum of 6 credit hours.

ELEC 8120/8126 PRINCIPLES OF NETWORK PERFORMANCE ANALYSIS (3) LEC. 3. Pr. (ELEC 5120 or ELEC 6120 or ELEC 6126) and (ELEC 7410 or ELEC 7416). Data network performance analysis, queueing systems, admission control, network traffic modeling, network calculus, flow and congestion control, wireless network analysis, and network simulation.

ELEC 8410 SPECTRAL ESTIMATION AND SYSTEM IDENTIFICATION (3) LEC. 3. Pr. ELEC 7410 or ELEC 7416. Elements of parameter estimation theory; Nonparametric spectral estimation: periodogram and spectral windows; Parametric approaches; applications; higher-order spectral analysis; input-output system identification.

ELEC 8420 DETECTION AND ESTIMATION THEORY (3) LEC. 3. Pr. ELEC 7410 or ELEC 7416. Decision theory concepts. Detection of deterministic and random signals in noise; parameter estimation. Bayesian and maximum likelihood approaches, non-random and random parameter estimation; signal estimation.

ELEC 8710 ADVANCED TOPICS IN SEMICONDUCTOR DEVICES (3) LEC. 3. Pr. ELEC 5710 or ELEC 6710 or ELEC 6716. Advanced treatment of selected topics in semiconductor devices. Course may be repeated for a maximum of 6 credit hours.

ELEC 8780 CONTEMPORARY TOPICS IN ELECTRICAL CIRCUIT DESIGN (3) LEC. 3. Pr. ELEC 5780 or ELEC 6780 or ELEC 6786. Departmental approval. Contemporary topics in electronic circuit design such as Delta-Sigma A/D and D/A conversion, switched capacitor circuitry, continuous time and discrete time filter design, communications electronics. Course may be repeated for a maximum of 6 credit hours.

ELEC 8900 ADVANCED INDEPENDENT STUDY (1-3) IND. Departmental approval. Supervised study in specialized areas of electrical and computer engineering. Course may be repeated for a maximum of 3 credit hours.

ELEC 8970 ADVANCED SPECIAL TOPICS (1-5) LEC. Departmental approval. Study of a specialized area of electrical and computer engineering not covered by regularly offered courses. Course may be repeated with change in topics. Course may be repeated for a maximum of 9 credit hours.

ELEC 8990 RESEARCH AND DISSERTATION (1-10) DSR. Course may be repeated for a maximum of 20 credit hours.